17 research outputs found

    Screening for Mutations of 21-Hydroxylase Gene in Hungarian Patients with Congenital Adrenal Hyperplasia

    Get PDF
    Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders, causing impaired secretion of cortisol and aldosterone from the adrenal cortex, with subsequent overproduction of adrenal androgens. The most common enzyme defect causing CAH is steroid 21-hydroxylase deficiency. To determine the mutational spectrum in the Hungarian CAH population, the CYP21 active gene was analyzed using PCR. A total of 297 Hungarian patients with 21-hydroxylase deficiency are registered in the 2nd Department of Pediatrics, Budapest, Hungary, and their clinical status was evaluated. Blood samples for CYP21 genotype determination could be obtained from 167 patients (representing 306 unrelated chromosomes and 56.2% of the total group of patients). Eight of the most common mutations were screened [In2 (intron 2 splice mutation), I172N, Del (Del: apparents large gene conversion), Q318X, R356W, 1761Tins, ClusterE6, V281L] using allele-specific amplification. The most frequent mutation in the Hungarian CAH population was found to be In2. Our results have shown a good genotype/phenotype correlation in case of most mutations; the In2 mutation is associated mostly with the severe form of the disease, whereas I172N was expressed in a wide spectrum of phenotypes. 1999

    FOXN3 and GDNF polymorphisms as common genetic factors of substance use and addictive behaviors

    Get PDF
    Epidemiological and phenomenological studies suggest shared underpinnings between multiple addictive behaviors. The present genetic association study was conducted as part of the Psychological and Genetic Factors of Addictions study (n = 3003) and aimed to investigate genetic overlaps between different substance use, addictive, and other compulsive behaviors. Association analyses targeted 32 single-nucleotide polymorphisms, potentially addictive substances (alcohol, tobacco, cannabis, and other drugs), and potentially addictive or compulsive behaviors (internet use, gaming, social networking site use, gambling, exercise, hair-pulling, and eating). Analyses revealed 29 nominally significant associations, from which, nine survived an FDRbl correction. Four associations were observed between FOXN3 rs759364 and potentially addictive behaviors: rs759364 showed an association with the frequency of alcohol consumption and mean scores of scales assessing internet addiction, gaming disorder, and exercise addiction. Significant associations were found between GDNF rs1549250, rs2973033, CNR1 rs806380, DRD2/ANKK1 rs1800497 variants, and the “lifetime other drugs” variable. These suggested that genetic factors may contribute similarly to specific substance use and addictive behaviors. Specifically, FOXN3 rs759364 and GDNF rs1549250 and rs2973033 may constitute genetic risk factors for multiple addictive behaviors. Due to limitations (e.g., convenience sampling, lack of structured scales for substance use), further studies are needed. Functional correlates and mechanisms underlying these relationships should also be investigated

    Association of Impulsivity and Polymorphic MicroRNA-641 Target Sites in the SNAP-25 Gene.

    Get PDF
    Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769) and two SNPs in the 3' UTR (rs3746544 and rs1051312) of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901) using PCR-RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T-T 3' UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3' UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels

    Association between anxiety and non-coding genetic variants of the galanin neuropeptide

    Get PDF
    Galanin, an inhibitory neuropeptide and cotransmitter has long been known to co-localize with noradrenaline and serotonin in the central nervous system. Several human studies demonstrated altered galanin expression levels in major depressive disorder and anxiety. Pharmacological modulation of galanin signaling and transgenic strategies provide further proof for the involvement of the galanin system in the pathophysiology of mood disorders. Little is known, however, on the dynamic regulation of galanin expression at the transcriptional level. The aim of the present study was to seek genetic association of non-coding single nucleotide variations in the galanin gene with anxiety and depression.Six single nucleotide polymorphisms (SNP) occurring either in the regulatory 5' or 3' flanking regions or within intronic sequences of the galanin gene have been genotyped with a high-throughput TaqMan OpenArray qPCR system in 526 healthy students (40% males). Depression and anxiety scores were obtained by filling in the Hospital Anxiety and Depression Scale (HADS) questionnaire. Data were analyzed by ANCOVA and Bonferroni correction was applied for multiple testing. Linkage disequilibrium (LD) analysis was used to map two haploblocks in the analyzed region.A single-locus and a haplotype genetic association proved to be statistically significant. In single-marker analysis, the T allele of the rs1042577 SNP within the 3' untranslated region of the galanin gene associated with greater levels of anxiety (HADS scores were 7.05¹4.0 vs 6.15¹.15; p = 0.000407). Haplotype analysis revealed an association of the rs948854 C_rs4432027_C allele combination with anxiety [F(1,1046) = 4.140, p = 0.042141, Ρ2 = 0.004, power = 0.529]. Neither of these associations turned out to be gender-specific. These promoter polymorphisms are supposed to participate in epigenetic regulation of galanin expression by creating potentially methylatable CpG dinucleotides. The functional importance of the rs1042577_T allele remains to be elucidated

    A common polymorphism of the human cardiac sodium channel alpha subunit (SCN5A) gene is associated with sudden cardiac death in chronic ischemic heart disease

    Get PDF
    Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.). The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360) and age-matched controls (n=300). Five single nucleotide polymorphisms (SNPs) from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2) that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351). A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio =1.455). None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association. Š 2015 Marcsa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris)

    Get PDF
    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (−212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5′ and 3′ UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3′ and 5′ UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene–behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system
    corecore